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ABSTRACT 

The maln theme of this paper concerns methods that may be classified as global 
(approximate) and local (exact). Some specific applications of these methods are 
found in: 

(1 )  Fracture and fatigue analysis of structures with 3-D surface flaws 

( 2 )  Large-deformation, post-buckling analysis of large space trusses and space 
frames, and their control 

( 3 )  Stresses around holes in composite laminates 
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A typical engineering problem is illustrated in figure 1, which shows a corner 
flaw at the intersection of a nozzle and a pressure vessel. The shape of the 
surface flaw may often be approximated mathematically as quarter-elliptical or 
quarter-circular. For the problem shown in figure 1, wherein the crack is located 
in the longitudinal plane of symmetry of the structure, only the so-called Mode I 
conditions prevail. In figure 1, the presence of a traction-free crack, in an 
otherwise unflawed solid, alters the stress-state only locally. From a viewpoint of 
fracture mechanics, however, the main quantities of interest are only the stress- 
intensity factors (strengths of asymptotic stress singularities) near the crack 
front. For analyzing fatigue crack growth and crack instability under thermal shock 
various flaw sizes and shapes need to be considered. The primary objective of 
analysis is to determine the variation of the Mode I stress-intensity factor along 
the border on the surface flaw. 

Figure 1. Corner surface-flaw at the pressure-vessel-nozzle intersection. 
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I Figure 2 shows the schematic of a 12-bay space frame. The equations of dynamic 
motion of the frame, assuming large deformations and plasticity, may be written as: 

t where M, is the mass matrix, 
ness matrix (which includes the effect of large defgrmation and plasticity), f4 the 
control-actuator force, gE the external load, (N+l)X_ the acceleration vector at 
time tN+1, (N+l)? N the velocity vector at tN+1, the incremental displacement be- 
tween tN and tN+1, and “1% the internal-force vector at tN. In order to implement 
the control algorithms in an efficient manner, the order of the above system of 
equations must be as small as possible (i.e., each frame member must be modeled by 
no more than one finite element). Further, the control must be implemented for 
pulse-type loading of high intensity, such that the above system of equations must 
be integrated directly rather than using a modal-decomposition. Also requirements 
of on-line control may necessitate that tK_, C,, and M, be known explicia (in closed 
form) for arbitrary values of deformation, without the need for introducing approxi- 
mate shape functions for deformation of each element and without the need €or any 
numerical integrations over each element. In figure 2, the object of inquiry is 
what effect does local (member) instability have on global (system) stability? How 
can we control the dynamic deformations locally to improve global behavior? Each 
member may be treated as a truss member, o r  a 3-D beam-type member, depending on 
joint design. How can local effects be accounted for simply and efficiently, so 
that algorithms for control of dynamic motion may be implemented, on line, using 
on-board computers in a large space structure? 

the matrix of passive damping, K, the tangent stiff- 

4 4 
7 2  8 

3 

Figure 2. Schematic of a 12-bay space frame. 
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, An appraisal of the computational mechanics methods is given in figure 3. 
These methods include the finite-element, boundary-element, and edge function 
methods (fig. 3). 

F: I N I TE ELEMENTS : 

TRIAL AND TEST 

TRIAL AND TEST 

APPROACH 

F U N C T I O N S  ARE B O T H  A P P R O X I M A T E  

F U N C T I O N S  ARE, I N  GENERAL, A L I K E  - GALERKIN 

I N  SOME I N S T A N C E S  I T  I S  B E S T  TO HAVE T E S T  F U N C T I O N S  D I F F E R E N T  

FROM TRIAL FUNCTIONS - PETROV-GALERKIN APPROACH 

THE SOLUTION I S  BOTH - GLOBALLY AND LOCALLY APPROXIMATE 
VERSATILE OR ARBITRARY GEOMETFIY, BOUNDARY CONDITIONS, SUITED 

FOR G L O B A L L Y  A P P R O X I M A T E  NCINLINEAR S O L U T I O N S  

BOUNDARY ELEMENTS : 

TEST FUNCTIONS ARE GLOBALLY EXACT FOR THE GIVEN LINEAR PROBLEM, 

OR A T  L E A S T  FOR T H E  HIGHEST-ORDER D I F F E R E N T I A L  OPERATOR O F  

T H E  PROBLEM 

TRIAL FUNCTIONS ARE APPROXIMATE (AT  BOUNDARY ONLY FOR LINEAR 

THE SOLUTION IS BOTH LOCALLY AND GLOBALLY APPROXIMATE 

NOT AS VERSATILE AS THE FINITE-ELEMENT METHOD, BUT EXCELLENT 

PROBLEMS, AND IN INTERIOR ALSO FOR NONLINEAR PROBLEMS) 

FOR SOME S P E C I F I C  PROBLEMS 

EDGE FUNCTION METHOD: 

TRIAL FUNCTIQNS ARE GLOBALLY EXACT 
TEST FUNCTIONS ASSUMED ONLY AT BOUNDARY 

LIMITED TO LINEAR PROBLEMS POSED BY CLASSICAL DIFFERENTIAL 

E Q U A T I O N S  

Figure 3. Appraisal of computational mechanics methods. 
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In the most commonly used Galerkin finite-element approach in computational 
solid mechanics, the trial and test function spaces are identical and consist of 
simple piecewise continuous algebraic polynomials over each finite element, such 
that these functions and their appropriate-order derivatives (as dictated by the 
problem on hand) are continuous at the interelement boundaries. For problems of 
fourth or higher order, such as those of plates and shells, the development of 

1 finite elements has long been, and continues to be, plagued by the need for C 
(or higher order) continuity at the interelement boundaries. However, the success 
of the finite-element method in structural mechanics is unparalleled and is mainly 
due to the intuitive and 'geometric' interpretation of the method. The method is 
versatile in its ability to deal with complicated structural assemblies, such as of 
beams, plates, and shells, of the type used in aerospace applications. The solu- 
tions obtained through the finite-element method may be classified, in general, as 
being both globally as well as locally approximate. 

On the other hand, in linear and nonlinear solid mechanics, it is often pos- 
A key ingre- sible to derive certain integral representations for displacements. 

dient which makes such derivations possible is the singular solution, in an infinite 
space, of the corresponding differential equation (in certain linear problems) or of 
the highest-order differential operator (in the nonlinear case, or even in the 
linear case when the full linear equation cannot be conveniently solved), for a 
'unit' load applied at a generic point in the infinite space. When the problem is 
linear and the singular solution can be established for the complete linear dif- 
ferential equation of the problem, the aforementioned integral representations for 
displacements involve only boundary integrals of unknown trial functions and their 
appropriate derivatives. Such an integral representation, when discretized, leads 
to the so-called boundary-element method. Such pure boundary-element methods are 
possible in linear, isotropic, elastostatics, and in problems of static bending of 
linear elastic isotropic plates. On the other hand, as in such cases as (i) linear 
problems wherein the singular solutions cannot be established for the entire dif- 
ferential equations, (ii) anisotropic materials, and (iii) problems of large 
deformation and material inelasticity, the integral representations (if any) for 
displacements would involve not only boundary integrals but also interior-domain 
integrals of the trial functions and/or their derivatives. A discretization of such 
integral equations would lead not only to a simple boundary-element method but also 
to a sort of hybrid boundary/interior element method. 

When asymptotic solutions to the governing differential equations of the prob- 
lem are used as assumed trial functions, the interior residual error is zero, and 
only the boundary conditions need to be satisfied in a weighted residual method. 
Such an approach is called the edge-function method, but is limited mostly to linear 
problems. For further details, see references 1 through 4. 
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The su r face - f low problems f o r  c u r r e n t  methods are noted i n  f i g u r e  4 .  Problems 
f o r  t h e  proposed method a r e  a l s o  shown. 

A1 1 Present Methods: S ingu la r  s t ress -s ta te  near the f l aw  
border i s  model ed by 1 oca1 l y  approximate methods 

( I )  F in i te-Element  Methods ( s i n g u l a r  elements) 
A t l u r i  & Kath i resan ( r e f s .  5-10) 

(Hybr id  crack elements) 3-6,000 d.0.f. 
Tracy, Barsoum, Newman & Raju ( re f s .  11-13) 

( D i s t o r t e d  i soparametric elements and 
s i n g u l a r  shape fn.)  5-10,000 d.0.f. 

These are very expensive, b u t  accommodate 
a r b i t r a r y  geometries o f  s t r u c t u r e  and f law. 

( I I - Boundary-El ement Methods ( f o r  l o c a l  l y  approxi-  
mate s t ress  ana lys i s  and K-est imat ion from 
s t ress  ex t rapo l  i t i o n )  

S t i 11 very expensive. 

Cruse ( r e f .  141, H e l i o t  e t  a l .  ( r e f .  15 ) .  
Not s u i t a b l e  f o r  ' t h i n '  s h e l l s  w i t h  flaws. 

( I I I 1 L i  ne-Spri ng Method 
E m i t e d  t o  simple geometries - o f  s t r u c t u r e  and 

f law. 

Proposed Method: --------- 
It i s  a GLOBALLY APPROXIMATE, b u t  -- LOCALLY EXACT 

S ingu la r  s t ress-s ta te  near the  f l aw  i s  NOT MODELED 

It i s  about 30 t imes cheaper than the  s ingu la r  

' D e t a i l s  ( A t l u r i  & Nish ioka ( r e f s .  16-21) - several  

METHOD 

NUMERICALLY 

f i n i t e -e lemen t  method 

papers w i t h  v a r i e d  examples) 

F i g u r e  4 .  Sur face - f l aw problems. 
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solution for 
uncracked body 

w 

Locally exact solution 
for pressurized crack 

Remarks: 1. So lu t i on  D: A r a t h e r  compl icated a n a l y t i c a l  
s o l u t i o n  ( A t l u r i  & V i  jayakumar, Journal o f  
Appl i e d  Mechanics, 1981 1 ( r e f .  22) 

i s  (i.e., the  So lu t i on  C) the  source o f  singu- 
lar i ty .  The stresses due to t h i s  l o c a l  s o l u t i o n  

2. Local s o l u t i o n  due t o  crack-face t r a c t i o n  alone 

decay- very rap id l y .  
a re  s u f f i c i e n t  t o  ob ta in  K-so lut ions w i t h  1% 

Only one o r  two 1 t e r a t i o n s  - 

accuracy. 

About 30 t imes cheaper than the  usual f i n i t e -  
element method f o r  a t y p i c a l  problem such as 
f lawed BWR nozzle. 

Figure 5. Global (approximate) and local (exact) analyses of embedded flaws. 

109 



Some comments concerning the solution of surface flaws in finite bodies using 
the present procedure are in order (fig. 4 ) .  
elliptical flaw embedded in an infinite solid is used as solution D, it is necessary 
to define the residual stresses over the entire crack-plane including the fictitious 
portion of the crack which lies outside of the finite body containing only a surface 
flaw (fig. 5). 
type funct€on-interpolation inside the interpolated region can be increased with the 
number of polynomial terms; however, the interpolating curve may change drastically 
outside of the region of interpolation. The optimum variation of pressure on the 
crack surface extended into the fictitious region should be as shown in figure 6 .  
For in-depth discussions of a variety of surface problems and their solutions, see 
refs. 19-21, 23-28. 

Since the analytical solution OF an 

Moreover it is well known that the accuracy of the ‘least-squares’ 

/ ACTUAL \ A S S U M E D  

I C A L  

H 

Figure 6. Postulated residual stress distributions on fictitious portions of an 
elliptical flaw, in the case of semi-elliptical or quarter-elliptical 
surf ace flaws. 
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For both 3-dimensional truss and frame members, explicit (locally exact) 
tangent stiffness matrices have been derived (fig. 7). Some effects of local 
(member) buckling on global (structural) behavior are illustrated in figures 8 
and 9. 

Truss Member: 

Member mater ia l  i s  nonl inear  
Each member may buckle and become curved (what 

tach  member undergoes l a r g e  displacement and l a r g e  
r i g i d  r o t a t i o n  

e f f e c t  does i t  have on global s t a b i l i t y ? )  

Frame Member: 
'-Concepts o f  3-dimensional semi-tangential r o t a t i o n s  

Each member undergoes a r b i t r a r i l y  l a rge  r i g i d  ro ta -  

Bending-stretching coup l ing  incorporated i n  each 

P las t ic -h inge method used t o  account f o r  p l a s t i c i t y  

Member forces: a x i  a1 , shear, and bending- t w i  s ti ng 

employed 

ti ons and r i  g i  d d i  sp l  acements 

member 

i n  each member 

moments 

Kondoh and A t l u r i  ( re f s .  29-30) and Kondoh e t  a1 . ( re fs .  31-32) 

Figure 7. Space trusses and space frames. 
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L = 6 6 . 0 4 ( c m )  

( a )  Thompson's Strut 

system imper fec t i on  cons idered 

no system imper fec t i on  

5 0  

Both  member 
b u c k l i n g  a n d  

cons idered ( two d i f f e r e n t  
3 0 : :  ; / magnitudes o f  imper fec t i ons  ) 

~ o j $  
1, 

00 1 
Dlsplocement of Node No 10 In the X Direction 

0 3  2 0  $0 6 0  6 0  '00 ' 2 0  '40 I60 
(CU) 

( b )  Effect of local (member) buckling on global (struc- 
tural 1 behavior. 
Tangent s t i f f n e s s  of each member i s  exact in both the pre-buckled 
and post-buckled states o f  member ( re f .  29) 

Figure 8. Thompson's s t rut  and e f f e c t  of l oca l  buckling on global  behavior. 

1 1 2  
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I t x3 i 

I I 

( a )  Load System: ( i )  PI: Vertical 
point loads as al l  nodes; 
( i i )  Pz: Vert i crpo int  loads a t  
nodes i n  quadrants XI, x2 > 0 

9 -9, 
\ 
N 
n 

I1 -e 
n 

-7 

-6  

- 5  

-4 

-7  

Member EA = 4.59Kg; Buckling E1 = 250 Kgm2 

EA = 4.59Kq; E I =  123 
Kgm2 

I 

-5  - 10 -I5 - 20 -25 I 104 

pI - PI /EA 

(b) Stabi 1 i ty boundary under 1 oads 
PI and P2 

Figure 9. Study of the effect of member buckling on global (system) stability. 
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Examples of the efficiency of the global/local approach in analyzing frames are 
illustrated in figures 10 and 11. In figure 10, the classical problem of a two-bar 
frame is schematically illustrated. In the present approach, the tangent stiffness 
matrix of each member (respresented by a single finite element) is derived from 
exact solutions of governing differential equations which account for the bending- 
stretching coupling. Thus, no "shape functions" are assumed in each element, and no 
numerical integrations are performed in forming the tangent stiffness matrix. The 
present numerical integrations are performed in forming the tangent stiffness 
matrix. The present numerical results are shown to agree excellently with those of 
Wood and Zienkiewicz (ref. 3 4 ) ,  as well as the experimental results of Williams 
(ref. 35). However, Wood and Zienkiewicz use five finite elements to model each 
member of the frame. 

In figure 11, the problem of plastic collapse of a frame is €llustrated. Here 
again, the tangent stiffness matrix of each member (represented by a single finite 
element) is derived in closed form, accounting for large deformations, large rota- 
tions, and plasticity. A plastic-hinge method is used, and the progressive develop- 
ment of plastic hinges, at various load levels, Is indicated in figure 11. 

E = I 0 3 r 1 0 7 ~ 1 b / ~ n ~  

y 
1000 2000 2000 4000 5COO 6000 1000 9"h) 

0 0  01 0 2  03 04 0 5  0 6  0 7  S l n l  
00 - 

Figure 10. Variation of load-point displacement and support reaction with applied 
load in a two-bar frame. Tangent stiffness of each 3-D beam member 
undergoing large deformation, large rotation, and plasticity is exact. 
Locally exact solution (ref. 30). 
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PL ~b 

3 ~ 1  
1 2.667 (Limit Analysis, U. B 1 

2.51 ~$f--~-d= 2.500 (Llmlt Analyslsi L. 8.1 

I.Oi i I I 
Iii / 

1 

M; 0 Fully Plostic Bendin Moment 
of Sectlon 6 

0.5ll/ / 1'. Moment of lnertla of Sectlon @ 

0 5  10 15 2.0 

2.3962 

2.5454 

12 

2.2198 &I4 
2 6186 R 0 PIos11c Hinge 

' TANGENT S T I F F N E S S  O F  EACH MEMBER UNDERGOING LARGE DEFORMATION, LARGE ROTATION AND 

PLASTICITY IS EXPLICIT AND EXACT, PLASTIC-HINGE METHOD USED, 
EXTENSION TO CRASH ANALYSIS OF FRAMES BEING STUDIED, 

Figure  11. P l a s t i c  collapse of frame. 
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Figure 12 shows a problem of current interest in the analysis of stiffened 
composite plates. Issues involve the following: (1) stress concentrations near the 
hole in a composite laminate, (2 )  local buckling of stiffeners, ( 3 )  effect of geo- 
metric imperfections, ( 4 )  effect of discontinuities, and ( 5 )  three-dimensional 
effects and delaminations near the hole. An efficient globally approximate and 
locally exact approach could possibly include: (1) use of locally exact, laminated 
hole elements with embedded three-dimensional stress state (refs. 36 and 371, 
(2) use of locally exact stiffener elements as described earlier (ref. 32), 
( 3 )  techniques for proper interacting of various elements, and ( 4 )  hole elements 
that can be improved by incorporating possible free-edge singularities in u 3i' 

Focus PROBLEM 

(GLOBALLY 8 LOCALLY APPROXIMATE) F I N I T E  ELEMENTS] 

Figure 12. A stiffened laminated-composite panel with a hole. 
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Another example of the advantages of using a global/local approach is illus- 
trated here in the problem of analysis of stresses near a hole in a laminated 
composite [two cases of (-45/+45), and (90/0), laminates are discussed]. 
shows a typical finite-element model with "special-hole elements" in which a 3-D 
asymptotic hole solution is embedded. Figures 13b and 13c illustrate the excellent 
accuracy obtained from the present approach, in comparison with a fully 3-D finite- 
element solution of Rybicki and Hopper (ref. 38). 
an order of magnitude less expensive. 
and 37. 

I 
I Figure 13a 

The present solution is, however, 
Further details are given in references 36 

TYPICAL FUI MODEL OF A LAMINATE 
WITH HOLE, 3-0 ASYMPTOTIC "HOLE- I N  (-45/+45), LAMINATE IN (90/0), LAMINATE 
SOLUTIONS" EMBEDDED I N  ELEMENTS 
NEAR THE HOLD(Ref. 36) 

STRESS AROUND A HOLE STRESS AROUND A HOLE 

Figure 13. Analysis of stress state near a hole in laminated composites. 
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The following conclusions and recommendations are given. 

. . Hybrid analytical/numerical methodologies should be explored 
Simplified analysis procedures for elasto-plastic should be considered 
(Dynamic response calculations should be studied (some benchmark problems 
essential)) 
Constitutive models badly need improvement 
Methods of coupling of problem-specific methodologies for use in general 
purpose programs should be explored 
Trends to treat structural mechanics problems as continuum mechanics 
problems should be critically reviewed; the knowledge base in structural 
mechanics should be fruitfully utilized 
Attempts to bridge the gap between micromechanics and macromechanics of 
heterogeneous (composite) media through computational mechanics should be 
explored 
Computational stochastic structural analysis methods should be developed 
Algorithms for new computing systems (MIMD) should be explored 
Expert systems, . . . . (? )  

NASA’s role should be to provide: 

Increased research support to universities 
Predoctoral NASA fellowships (up to 20K per year, tax-free) that could be 
awarded to attract the best students 
Long-range funding to properly plan and sustain high-quality research 
efforts 
Increased access to supercomputers 
Frequent visits to NASAfacilitiesby graduate students to participate in 
laboratory testing. University facilities in this area are scarce; 
students in computational mechanics should get some first-hand experience 
in experimental mechanics 
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